Nillion完成2500万美元融资,主打的盲计算是什么?与ZKP、FHE有什么区别?
不少朋友看到Nillion融资$25M的消息,都会好奇 WTF什么是“盲计算”? MPC、ZKP、FHE、TEE这些生僻概念刚有一些了解,一个崭新的概念又冒出来了。那么,盲计算的工作流程大致怎样?Nillion提供的盲计算解决方案究竟怎样?接下来,谈谈我的理解:
1)什么是Blind Compute(盲计算)?简单而言,盲计算是一种让服务端(节点)对某个加密状态的数据片段执行计算任务,最终达到保护隐私的安全计算方法。
和ZKP、TEE、MPC、FHE等增强加密算法目标都一致,差异在于:ZKP零知识证明生成证明需要巨大的开销,适合链下存储+计算,链上只验证的场景,比如:Rollup Layer2;TEE可信执行环境是一种依赖硬件厂商在隔离环境下进行计算的方法;FHE全同态加密虽然可以直接在加密数据上执行计算,但当下只支持特定运算;
“盲计算”是一种更加General的计算框架,因为ZKP、TEE、FHE等加密技术都可能被作为其技术框架的一部分。
众所周知,ZKP、TEE、FHE等目前都在和Crypto接轨技术落地应用探索和优化阶段。而盲计算则有可能把这些加密核心技术都聚合应用起来,从而为隐私保护探索出一体化的工程实践方案。
2)盲计算的核心逻辑是做分布式节点增强,让单个节点同时具备分段存储+计算的能力,再加上一个可验证的开放治理网络,进而达成节点不知道“完整”数据前提下有效工作的结果。如何理解呢?
常态下保护数据隐私状态需要在A节点存储数据,然后加密后交由B节点计算,再解密后经由C节点验证最终完成数据的存储+计算工作。这个过程中数据传输存在极大的成本损耗,且多次反复Encrypt——>Decrypt的过程数据存在暴露的情况,节点之间的互信成本也高,很难保证隐私不泄漏。
Nillion构建的业务逻辑恰好弥补了这一缺陷,其大致工作流程为(仅供理解):
Nillion构建了一个分布式节点网络,每个节点都具备存储+计算的增强能力,Nillion网络在收到数据传输处理需求时,先经由Nada特定语言执行编译预处理,让原始数据被拆分成很多片段,并且都处于加密状态。
再经AIVM虚拟机来调度和分配,其分布式节点会随机存储并计算这些数据片段,最终完成聚合和统一验证。整个过程,单一节点并无法知道全部的数据内容,拼凑到一起却能完成整体数据的加密传输和计算。
为啥说盲计算可以聚合应用ZKP、TEE、FHE这些技术,逻辑也很简单,在数据预处理也就是给数据加密阶段完全可以应用FHE同态加密技术,而节点存储计算数据则可以在TEE可信执行环境下进行,在聚合和验证节点工作成果的时候则可以用ZKP提升验证聚合效率。
3)在我看来,ZKP、TEE、FHE、MPC等技术都或多或少存在一些工程化落地缺陷,目前Crypto领域几乎各个赛道都挤满了项目,但大差不差都在做成本和效率优化的工作,且都聚焦于Crypto特定应用场景。
Nillion所提出的盲计算框架,虽然也未实现大规模应用,但其一体化的加密解决方案,很可能在AI可验证计算、机器学习等更广泛的数据保护领域得以通用化采纳。
免责声明:文章中的所有内容仅代表作者的观点,与本平台无关。用户不应以本文作为投资决策的参考。
你也可能喜欢
241115: 狗狗币飙升 48%,交易员瞄准 1 美元里程碑
狗狗币 (DOGE) 在 24 小时内飙升 48%,延续了强劲的四天涨势,引发了人们对 1 美元目标价的希望。自 2021 年 5 月以来,该 memecoin 首次短暂突破 41 美分,上周上涨超过 150%,30 天内增长近两倍。围绕埃隆·马斯克可能推出的“政府效率部”(D.O.G.E) 计划的猜测,旨在精简政府支出,引发了交易员的看涨情绪。马斯克在特朗普政府的支持提高了 DOGE 的知名度并重新激发了散户的兴趣,引发了媒体的广泛关注。此次反弹导致 DOGE 跟踪合约损失超过 6800 万美元,未平仓合约接近 4 月以来的最高水平。对于许多投资者来说,1 美元仍然是一个关键的心理目标,受
治理模式再升级:去中心化决策开启Aethir发展新阶段